Multilevel Modeling
This course covers the statistical techniques used to analyze data with a hierarchical or nested structure. This can include data from surveys where students are nested within schools or experiments where different observations are nested within subjects. The class will cover the theoretical foundations of multilevel models. Students will learn the distinction between fixed and random effects. Students will learn how to fit multilevel models using statistical software and how to interpret the results. This course will also cover advanced topics such as model selection, missing data handling, and dyadic data analysis.
Note
The articles written in English have blue links or blue table cells. The articles written in Thai have red links or red table cells.
Spring 2024 (Intro to Multilevel Modeling; Undergraduate, CU)
Lecture Material Archive
Topics | Materials |
---|---|
Interpreting Regression Models and Basic Multilevel Models | PowerPoint (2013). |
Interpreting Multilevel Models with Centering | PowerPoint (2013). |
Interpreting Interactions in Multilevel Models | PowerPoint (2013). |
Interpreting Multilevel Models for Longitudinal Data | PowerPoint (2013). |
Using R for Multilevel Models | Paper (2013). Data set (2013). R script (2013). Supplemental Material for Interpreting Multivariate Growth Curve Model (2013). |