Regression

Sunthud Pornprasertmanit

Chulalongkorn University

Terms

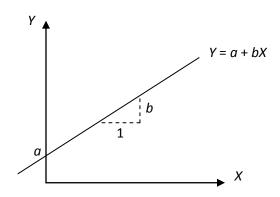
Predictor Variable, Independent Variable
Criterion Variable, Dependent Variable
Actual Value, Predicted Value, Error of Prediction (Residual)

$$Y - Y' = e$$

Linear Equation

Regression Line

$$Y = a + bX$$

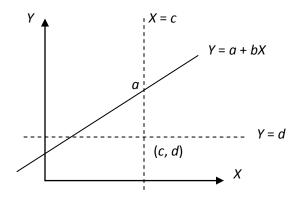


Slope (b)

Y-intercept (a)

Change axis

$$Y - d = a + b(X - c)$$

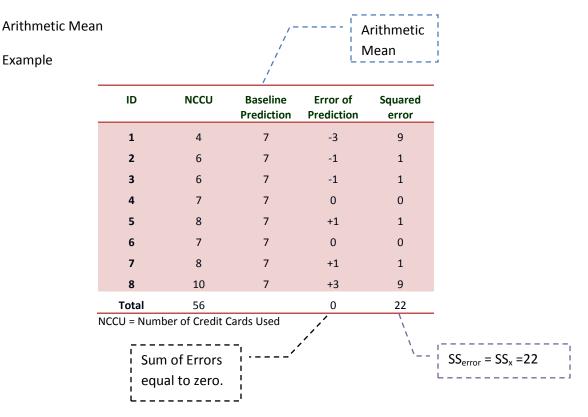


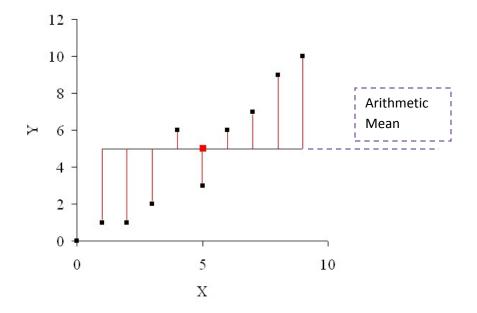
Steps of predicting value in criterion variable

No Predictor

Which value that can predicted all value with the least error?

- Sum of Errors equal to zero
- Least Sum of Squared Errors (SS_{error})





One Predictor

Linear Transformation from predictor to predicted value that can predict criterion as much as possible.

$$Y' = a + bX$$

$$Y - Y' = e$$

What are the values of constants a and b that make SS_{error} at least? (Supplement 1)

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - Y_i')^2$$

The regression line must pass coordinate $(\overline{X}, \overline{Y})$.

$$a = \bar{Y} - b\bar{X}$$

$$b = \frac{S_{XY}}{S_X^2}$$

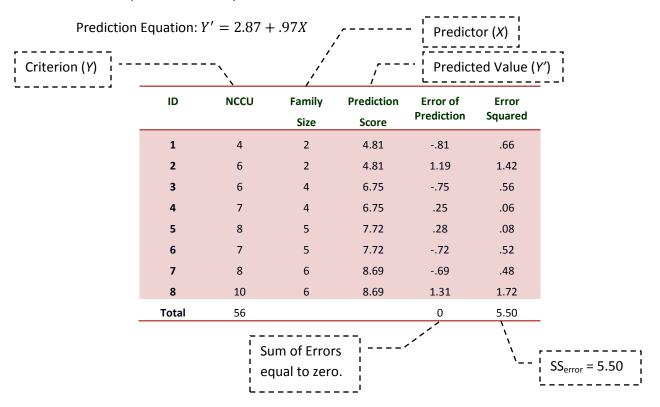
The more correlation between predictor and criterion, the more accuracy in prediction.

Correlation Matrix

Example

	1	2	3	4 🚄
1. NCCU				
2. Family Size	.87			
3. Family Income	.83	.67		
4. Number of Automobiles	.34	.19	.30	

The best predictor is family size.



SS_{error} reduces from 22 to 5.50.

For regression analysis, SS_{error} from no predictor is SS_{total}.

The difference between SS_{error} from one predictor and SS_{total} is SS_{regression}.

$$SS_{\text{total}} = SS_{\text{regression}} + SS_{\text{error}}$$

The proportion of $SS_{\text{regression}}$ and SS_{total} is coefficient of determination.

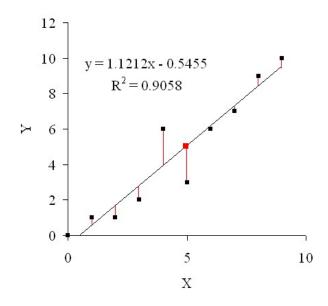
$$r^2 = \frac{SS_{\text{regression}}}{SS_{\text{total}}} = 1 - \frac{SS_{\text{error}}}{SS_{\text{total}}}$$

Therefore, in this example, X can explain Y variance equal to 16.5 (75 %).

Standard error of estimate $(S_{Y,X})$ is standard deviation of error of prediction.

$$S_{Y.X} = \sqrt{\frac{SS_{error}}{n}} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - Y_i')^2}{n}}$$
$$S_{Y.X} = S_X \sqrt{1 - r_{YX}^2}$$

When predicting value, regression analysis can provide point estimate or interval estimate (See later in confidence interval).

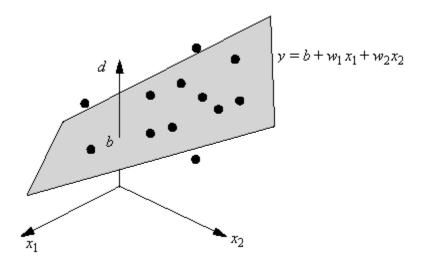


More than One Predictor

Linear Combination from predictors to predicted value that can predict criterion as much as possible.

$$Y' = a + b_1 X_1 + b_2 X_2$$
$$Y - Y' = e$$

Regression Plane



What is the constants a, b_1 and b_2 that make SS_{error} as less as possible?

The regression line must pass coordinate (\bar{X}_1 , \bar{X}_2 , \bar{Y}).

$$a = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2$$

$$b_1 = \left(\frac{r_{Y1} - r_{Y2}r_{12}}{1 - r_{12}^2}\right) \frac{S_Y}{S_1}$$

$$b_2 = \left(\frac{r_{Y2} - r_{Y1}r_{12}}{1 - r_{12}^2}\right)\frac{S_Y}{S_2}$$

What do a, b_1 and b_2 mean?

Multicollinearity

Additional predictor should has high correlation with criterion and low correlation with other predictors, because it explain SS_{error} .

Partial Correlation

$$pr_{XY(Z)} = \frac{r_{XY} - r_{YZ}r_{XZ}}{\sqrt{1 - r_{YZ}^2}\sqrt{1 - r_{XZ}^2}}$$

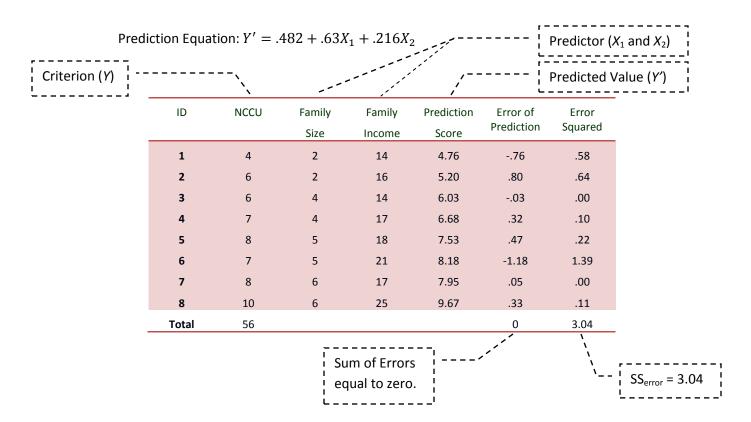
Example

	1	2	3	4
1. NCCU				
2. Family Size	.87			
3. Family Income	.83	.67		
4. Number of Automobiles	.34	.19	.30	

$$pr_{31(2)} = \frac{r_{31} - r_{32}r_{12}}{\sqrt{1 - r_{32}^2}\sqrt{1 - r_{12}^2}} = \frac{.83 - (.67)(.87)}{\sqrt{1 - (.67)^2}\sqrt{1 - (.87)^2}} = .68$$

$$pr_{41(2)} = \frac{r_{41} - r_{42}r_{12}}{\sqrt{1 - r_{42}^2}\sqrt{1 - r_{12}^2}} = \frac{.34 - (.19)(.87)}{\sqrt{1 - (.19)^2}\sqrt{1 - (.87)^2}} = .36$$

The best additional predictor is Family Income.



SS_{error} reduces from 5.50 to 3.04

Coefficient of Multiple Determination

SS_{regression} increase from 16.50 (75 %) to 18.96 (86 %)

$$R_{Y.12}^2 = \frac{r_{Y1}^2 + r_{Y2}^2 - 2r_{Y1}r_{Y2}r_{12}}{1 - r_{12}^2}$$

The addition predictor increase explaining variance equal to 11 %.

General Formula of Multiple Regression

$$Y' = a + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$$

What do a, b_1 , b_2 , ..., b_n mean?

Recentering

$$a = \overline{Y} - b\overline{X}$$

$$Y' = a + bX$$

$$Y' = (\overline{Y} - b\overline{X}) + bX$$

$$Y' = \bar{Y} + b(X - \bar{X})$$

If centering at mean of predictor, what is intercept mean, in equation 1?

$$a = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2$$

$$Y' = a + b_1 X_1 + b_2 X_2$$

$$Y' = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2 + b_1 X_1 + b_2 X_2$$

$$Y' = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2 + b_1 (X_1 - \overline{X}_1) + b_2 (X_2 - \overline{X}_2) \iff 2$$

$$Y' = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2 + b_1 (X_1 - \overline{X}_1) + b_2 (X_2 - \overline{X}_2) \iff 3$$

$$Y' = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2 + b_1 (X_1 - \overline{X}_1) + b_2 (X_2 - \overline{X}_2) \iff 4$$

What are intercept means in equation 2, 3, and 4?

Confidence Interval of Predicted Value

For interval estimate, predicted value and confidence interval are used.

68.3 %:
$$Y' \pm S_{Y,X}$$
 or $Y' \pm S_{Y,12}$

95.4 %:
$$Y' \pm 2S_{Y.X}$$
 or $Y' \pm 2S_{Y.12}$

Assumption in Regression Analysis

- 1) Independent of correlated errors
- 2) Errors distribute in normal distribution
- 3) Linearity
- 4) Homoscadasticity
- 5) Multicollinearity